a2 United States Patent

US009311612B2

(10) Patent No.: US 9,311,612 B2

Delchey et al. 45) Date of Patent: Apr. 12,2016
(54) SYSTEM AND METHOD FOR IMPROVED OTHER PUBLICATIONS
SERVICE ORIENTED ARCHITECTURE
“FEuropean Application Serial No. 11010010.4, Search Report mailed
(75) Inventors: Ivan Delchev, Zurich (CH); Juergen May 18, 20127, 8 pgs.
Vogel, St. Gallen (CH) Dean, J., et al., “MapReduce: simplified data processing on large
clusters”, Communications of the ACM, 51(1), (Jan. 2008), 107-113.
(73) Assignee: SAP SE, Walldorf (DE) Koulouzis, Spiros, et al., “Data Transport between Visualization Web
Services for Medical Image Analysis”, International Conference on
(*) Notice: Subject to any disclaimer, the term of this Computational Science, ICCS 2010, (2010), 1727-1736.
patent is extended or adjusted under 35 Wieland, Matthias, et al., “Towards Reference Passing in Web Ser-
U.S.C. 154(b) by 443 days. vice and Workflow-based Applications”, 2009 IEEE International
Enterprise Distributed Object Computing Conference, (Sep. 1,
(21) Appl. No.: 12/976,058 2009), 109-118.
“D1.4.1A SOA4AIl References Architecture Specification”, SOA 4
(22) Filed: Dec. 22, 2010 All, (Jun. 3, 2009), 70 pgs.
“Enterprise Service Bus”, Wikipedia, [Online]. Retrieved from the
(65) Prior Publication Data Internet: <URL: en.wikipedia.org/wiki/Enterprise_service bus>,
(Accessed Dec. 2, 2010), 6 pgs.
US 2012/0167092 Al Jun. 28,2012 “ESB Myth Busters: 10 Enterprise Service Bus Myths Debunked”,
[Online]. Retrieved from the Internet: <URL: soa.sys-con.com/node/
(51) Int.CL 48035/print>, (Accessed Dec. 2, 2010), 6 pgs.
G06Q 10/06 (2012.01) “Pubsubhubbub”, Wikipedia, [Online]. Retrieved from the Internet:
GO6F 9/48 (2006.01) <URL: en.wikipedia.org/wiki/Pubsubhubbub>, (Accessed Oct. 15,
(52) US.CL 2010), 2 pgs.
CPC G06Q 10/06 (2013.01); GOGF 9/4843 (Continued)
(2013.01)
9 IFJlsgiCOf.f.l.?.lf.s.l.fi.c?;lso/lllfsleoa;c?o9/2017203 203 206, Lrimary Examiner — Abdullah Al Kawsar
’ 705/7.11-7.27 (74) Attorney, Agent, or Firm — Schwegman Lundberg &
See application file for complete search history. Woessner, P.A.
(56) References Cited 7 ABSTRACT
Certain embodiments enable improved execution of service-
U.S. PATENT DOCUMENTS oriented tasks by coordinating service providers that access
2002/0184294 A1* 12/2002 Volkoffetal. wovvovvovin.. 709/104 service-input values from other service providers and gener-
2004/0019890 Al* 1/2004 Verbekeetal. ... 718/100 ate service-output values that are accessible by other service
2006/0168174 AL* 72006 Gebhart etal. 709/223 providers. Improved performance results from distributed
%883;8%?;% ﬁi N ggggg %/I:g(s)r?te?ﬂ """"""" ;%ggg operations of service providers that do not require centralized

2011/0138394 Al* 6/2011 Ravishankar et al.
2011/0239126 Al* 9/2011 Ericksonetal. ...

718/104
715/744

2011/0265091 Al* 10/2011 Lyetal. ..o 718/103

10 ~a

exchange of all information.

22 Claims, 4 Drawing Sheets

10

SAVING TASK AS A SEQUENCE OF SERVICES

‘ 104

SENDING A FIRST TASK-PENDING NOTIFICATION
10 THE FIRST SERVICE PROVIDER

‘ 108

RECEVING A FIRST TASK-RESULTS NOTIFICATION
FROM THE FIRST SERVICE PROVIDER

108

SENDING A SECOND TASK-PENDING NOTIFICATION
10 THE SECOND SERVICE PROVIDER

‘ 110

RECEVING A SECOND TASK-RESULTS NOTIFCATION
FROM THE SECOND SERVICE PROVIDER

2

PROVIDING SELECTED SERVICE-QUTPUT VALUES

10 USER

US 9,311,612 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Pubsubhubbub—Project Hosting on Google Code”, [Online].
Retrieved from the Internet: <URL: code.google.com/p/pubsubhub-
bub/>, (Accessed Oct. 15, 2010), 3 pgs.

“Resource Description Framework”, Wikipedia, [Online]. Retrieved
from the Internet: <URL: en.wikipedia.org/wiki/Resource_ Descrip-
tion_ Framework>, (Accessed Oct. 15, 2010), 11 pgs.

“Resource Description Framework (RDF)”, [Online]. Retrieved
from the Internet: <URL: w3.0org/RDF/>, (Accessed Oct. 15, 2010),
3 pgs.

“Service-oriented architecture”, Wikipedia, [Online]. Retrieved from
the Internet: <URL: en.wikipedia.org/wiki/Service-oriented__archi-
tecture>, (Accessed Dec. 2, 2010), 18 pgs.

“SOA4All”, Wikipedia, [Online]. Retrieved from the Internet:
<URL: en.wikipedia.org/wiki/SOA4All>, (Accessed Oct. 15,2010),
2 pgs.

Woolf, Bobby, “ESB-oriented architecture: The wrong approach to
adopting SOA”, [Online]. Retrieved from the Internet: <URL: ibm.
com/developerworks/webservices/library/ws-soa-esbarch/>, (Sep.
27,2007), 8 pgs.

Zambonelli, Franco, “Organisational Abstractions for the Analysis
and Design of Multi-Agent Systems”, Workshop on Agent-Oriented
Software Engineering at ICSE 2000, (Mar. 2, 2000), 15 pgs.

* cited by examiner

U.S. Patent Apr. 12,2016 Sheet 1 of 4 US 9,311,612 B2

100 ~q
P

SAVING TASK AS A SEQUENCE OF SERVICES
+ 104

SENDING A FIRST TASK-PENDING NOTIFICATION
10 THE FIRST SERVICE PROVIDER

‘ 106

RECEIVING A FIRST TASK-RESULTS NOTIFICATION
FROM THE FIRST SERVICE PROVIDER

+ 108

SENDING A SECOND TASK-PENDING NOTIFICATION
10 THE SECOND SERVICE PROVIDER

+ 110

vy

RECEIVING A SECOND TASK-RESULTS NOTIFICATION
FROM THE SECOND SERVICE PROVIDER

; 12

L

PROVIDING SELECTED SERVICE-OUTPUT VALUES
10 USER

V%

U.S. Patent Apr. 12,2016

200 ~a

Sheet 2 of 4 US 9,311,612 B2

204

FIRST SERVICE
PROVIDER
(SERVICE A)

AN

""""""""""

1

| JTASKS /1234

ALY

..................

SECOND SERVICE
PROVIDER
(SERVICE B)

T

..................

""""""""""""

U.S. Patent

Apr. 12,2016 Sheet 3 of 4

300 ~a

W
¢

US 9,311,612 B2

PROCESSING SYSTEM

OPERATING SYSTEM

TASK-EXECUTION MODULE
308

L

TASK-SAVING MODULE

W

COMBINED TASK-PENDING
NOTIFICATION MODULE

AV

COMBINED TASK-RESULTS
NOTIFICATION MODULE

U4

~

FINAL TASK-RESULTS
MODULE

304

T 306

Vi3

U.S. Patent Apr. 12,2016 Sheet 4 of 4 US 9,311,612 B2

Wy
/\
W1 processor ~ 410
- VDED DISPLAY
A2A{INSTRUCTIONS
W wewory A2
L | ALPHA-NUVERC
INPUT DEVICE
424 INSTRUCTIONS
408 L 414
sl Ul NAVICATION
STATIC. MEMORY - 23 o
120 DRNVE UNT [~ 418
NETWORK B MACHINE -READABLE
INTERFACE DEVICE [MEDIUM
02
A2A A INSTRUCTIONS
X\ | A0
~ A\Q
| sionaL GeNERaTION
m - DEVICE

Jipd

US 9,311,612 B2

1
SYSTEM AND METHOD FOR IMPROVED
SERVICE ORIENTED ARCHITECTURE

BACKGROUND

1. Technical Field

The present disclosure relates generally to computing and
more particularly to service-oriented computing.

2. Description of Related Art

Service Oriented Architectures (SOA) provide a variety of
advantages over more traditional methods of distributing
computing. Those include and are not limited to platform-
independence, loose coupling, dynamic search and binding,
and location-independence. Implementations of SOA are
often based on synchronous web services orchestrated by an
Enterprise Service Bus (ESB), which decouples service pro-
viders from service consumers and supports service registra-
tion, discovery and orchestration including scheduling and
load-balancing. In this context, service providers may operate
as passive building blocks that simply perform a task when
queried and reply with the result. Typically then all data
requests and responses pass through the ESB, which may
become a substantial bottleneck for processing service
requests. Thus there is a need for systems and methods that
enable improved coordination of service-oriented tasks.

SUMMARY

Certain embodiments enable improved execution of ser-
vice-oriented tasks by coordinating service providers that
access service-input values from other service providers and
generate service-output values that are accessible by other
service providers. Improved performance results from dis-
tributed operations of service providers that do not require
centralized exchange of all information.

One embodiment relates to a method of executing a task
that includes a sequence of services. This method includes
saving the task as a sequence of services including a first
service and a second service, where the saved task includes a
first service-input location that indicates where first service-
input values are stored for the first service. The method then
includes sending a first task-pending notification to a first
service provider corresponding to the first service, where the
first task-pending notification includes the first service-input
location. The method then includes receiving a first task-
results notification from the first service provider, where the
first task-results notification includes a first service-output
location that indicates where the first service provider has
stored corresponding first service-output values. The method
then includes sending a second task-pending notification to a
second service provider corresponding to the second service,
where the second task-pending notification includes the first
service-output location identified as a second service-input
location that indicates where second service-input values are
stored for the second service. The method then includes
receiving a second task-results notification from the second
service provider, where the second task-results notification
includes a second service-output location that indicates
where the second service provider has stored corresponding
second service-output values. The process can be continued
when the task includes additional services. Optionally,
selected service-output values can be provided to a user as a
final result of the task.

Another embodiment relates to an apparatus for carrying
out the above-described method, where the apparatus
includes a computer for executing instructions related to the
method. For example, the computer may include a processor

10

15

20

25

30

35

40

45

50

55

60

65

2

for executing at least some of the instructions. Additionally or
alternatively the computer may include circuitry or other
specialized hardware for executing at least some of the
instructions. Another embodiment relates to a computer-
readable medium that stores (e.g., tangibly embodies) a com-
puter program for carrying out the above-described method
with a computer. In these ways aspects of the disclosed
embodiments enable improved coordination of service-ori-
ented tasks.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart that shows a method of executing a
task according to an example embodiment.

FIG. 2 is a diagram that shows a system related to the
embodiment shown in FIG. 1.

FIG. 3 is a schematic representation of an apparatus, in
accordance with an example embodiment.

FIG. 4 is a block diagram of a computer processing system
within which a set of instructions for causing the computer to
perform any one of the methodologies discussed herein may
be executed.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

FIG. 1 is a flowchart that shows a method 100 of executing
atask according to an example embodiment. A first operation
102 includes saving the task as a sequence of services includ-
ing a first service and a second service. For example, FIG. 2
shows a diagram of a system 200 that includes a task-coordi-
nating unit 202, a first service provider 204 and a second
service provider 206, where the first service provider 204
provides service A and the second service provider 206 pro-
vides service B. Typically the task-coordinating unit 202
includes an ESB as well as other conventional computing
elements. (“D1.4.1A SOA4All Reference Architecture
Specification,” Krummenacher et al., SOA4All Consortium,
Jun. 3, 2009.) The service providers 204, 206 may also
include conventional computing elements, and the compo-
nents of the system 200 may communicate via standard net-
working operations (e.g., Internet services).

In this example, the task is a sequence of just two services,
and the task-coordinating unit 202 saves the task labelled
“1234” in a file directory “/tasks/1234” 202A under its con-
trol (e.g., “ESB_URIL /tasks/1234”). The task can be saved,
for example, as a composition of services where Service A is
followed by Service B (e.g., Sg'S,). More generally, addi-
tional services may be added or repeated (e.g.,
S SgS,-S5S,). Additionally, the saved task includes a first
service-input location that indicates where first service-input
values are stored for the first service. In FIG. 2, for example,
the first service-input values may also be stored in the same
file directory “/tasks/1234” 202 A or elsewhere in the system
200 (e.g., at one of the service providers 204, 206). Option-
ally, the task-coordinating unit 202 may receive task-input
values from a user to specify the first service-input values.
The task-coordinating unit 202 may have access to a database
that relates services to service providers 204, 206 so that those
relationships are immediately available. Additionally the ser-
vice providers 204, 206 may have service-provider interfaces
that allow access by the task-coordinating unit 202 in order to
determine those relationships.

With reference again to FIG. 1, a second operation 104
includes sending a first task-pending notification from the
task-coordinating unit 202 to the first service provider 204,
where the first task-pending notification includes the first

US 9,311,612 B2

3

service-input location (e.g., in the task-coordinating unit’s
file directory “/tasks/1234” 202A). Next, the first service
provider 204 provides the first service by accessing the first
service-input values at the first service-input location, gener-
ating the first service-output values from the first service-
input values, and storing the first service-output values at the
first service-output location. The first service-output location
is typically a file directory “/tasks/1234” 204A under the
control of the first service provider 204 (e.g., “SERVICE_
A_URL/tasks/1234”).

A third operation 106 includes receiving a first task-results
notification at the task-coordinating unit 202 from the first
service provider 204. The first task-results notification
includes the first service-output location that indicates where
the first service provider 204 has stored the corresponding
first service-output values (e.g., the file directory “/tasks/
1234 204 A at the first service provider 204).

A fourth operation 108 includes sending a second task-
pending notification from the task-coordinating unit 202 to
the second service provider 206 corresponding to the second
service. The second task-pending notification includes the
first service-output location identified as a second service-
input location that indicates where second service-input val-
ues are stored for the second service. Next the second service
provider 206 provides the second service by accessing the
second service-input values at the second service-input loca-
tion, generating the second service-output values from the
second service-input values, and storing the second service-
output values at the second service-output location. Similarly
as in the first service provider 204, the second service-output
location is typically a file directory “/tasks/1234” 206 A under
the control of the second service provider 206 (e.g., “SERVI-
CE_B_URL/tasks/1234”).

A fifth operation 110 includes receiving a second task-
results notification at the task-coordinating unit 202 from the
second service provider 206, The second task-results notifi-
cation includes the second service-output location that indi-
cates where the second service provider 206 has stored cor-
responding second service-output values. In a case where a
task includes a third service (e.g., S-SzS) the process can
be continued by sending a third task-pending notification
from the task-coordinating unit 202 to a third service pro-
vider, which in some cases may be identified with either the
first or second service providers 204, 206.

When the task is completed, a sixth operation 112 includes
providing selected service-output values to the user as a final
result of the task. In the present example where the task
includes just two services (i.e., Sz-S,) the selected service-
output values may be identified as the second service-output
values. Then the task-coordinating unit 202 may simply send
the second service-output location to the user. Alternatively
the task-coordinating unit 202 may first access the second
service-output results at the second service-output location
and then send the second service-output results to the user in
some convenient format.

As a specific example, the user may submit task-input
values that include a location (e.g., a zip code) where a hotel
reservation is desired. The first service provider 204 may then
fetch the task-input values from an accessible file directory
“/tasks/1234” 202A, generate related hotel information
including addresses, rates and on-line reservation access and
save these results as first service-output values in the file
directory “/tasks/1234” 204 A under its control. The second
service provider 206 may then access the first service provid-
er’s file directory 204A, fetch the first service-output values,
augment the hotel information to include a graphical display
that includes a map with icons that represent the hotels, and

10

15

20

25

30

35

40

45

50

55

60

65

4

save these results as second service-output values in the file
directory 206 A under its control. The second service-output
values then provide the desired final result including the
graphical display that enables the user to access hotel infor-
mation and make a reservation. In this way the operations of
the first service provider 204 and the second service provider
206 are carried out as distributed operations with limited
involvement by the task-coordinating unit 202.

Depending on the operational setting, the first and second
task-pending notifications may each include a saved-task
location that indicates where the saved task is stored (e.g., in
the task-coordinating unit’s file directory “/tasks/1234”
202A). Then the service providers 204, 206 also have access
to details of the saved task in cases where the corresponding
service-input values do not provide a complete specification
for the service. In general, subject to conventional security
concerns that may require password protection, the file direc-
tories 202A, 204A, 206A of the task-coordinating unit 202
and the service providers 204, 206 are accessible through
conventional network access (e.g., a Uniform Resource Loca-
tor (URL)). Also depending on the operational setting, the
task-coordinating unit 202 may update the saved task to indi-
cate completion of a service in response to receiving the
task-results notification from the corresponding service pro-
vider 204, 206.

In some cases, it may be desirable for one or more of the
service providers 204, 206 to maintain a cache of service-
output values that are generated from received service-input
values. Then providing the service may include generating at
least some service-output values by accessing cache values
stored prior to receiving a corresponding task-pending noti-
fication. The service providers 204, 206 may additionally
perform load-balancing and scheduling functions related to
their own operations.

Note that the words first and second are used here and
elsewhere for labeling purposes only and are not intended to
denote any specific spatial or temporal ordering. Further-
more, the labeling of a first element does not imply the pres-
ence of a second element.

Additional embodiments relate to an apparatus for carrying
out any one of the above-described methods, where the appa-
ratus includes a computer for executing computer instruc-
tions related to the method. In this context the computer may
be a general-purpose computer including, for example, a
processor, memory, storage, and input/output devices (e.g.,
keyboard, display, disk drive, Internet connection, etc.). How-
ever, the computer may include circuitry or other specialized
hardware for carrying out some or all aspects of the method.
In some operational settings, the apparatus or computer may
be configured as a system that includes one or more units,
each of which is configured to carry out some aspects of the
method either in software, in hardware or in some combina-
tion thereof. For example, the system may be configured as
part of a computer network that includes the Internet. At least
some values for the results of the method can be saved for
later use in a computer-readable medium, including memory
units (e.g., RAM (Random Access Memory), ROM (Read
Only Memory)) and storage devices (e.g., hard-disk systems,
optical storage systems).

Additional embodiments also relate to a computer-read-
able medium that stores (e.g., tangibly embodies) a computer
program for carrying out any one of the above-described
methods by means of a computer. The computer program may
be written, for example, in a general-purpose programming
language (e.g., C, C++) or some specialized application-spe-
cific language. The computer program may be stored as an
encoded file in some useful format (e.g., binary, American

US 9,311,612 B2

5

Standard Code for Information Interchange (ASCII)). In
some contexts, the computer-readable medium may be alter-
natively described as a computer-useable medium, a com-
puter-storage medium, a computer-program medium,
machine-readable medium or some alternative non-transitory
storage medium. Depending on the operational setting, speci-
fied values for the above-described methods may correspond
to input files for the computer program or computer.

FIG. 3 shows a schematic representation of an apparatus
300, in accordance with an example embodiment for execut-
ing a task. For example, the apparatus 300 may be used to
implement the method 100 of executing a task as described
above. The apparatus 300 is shown to include a processing
system 302 that may be implemented on a server, client, or
other processing device that includes an operating system 304
for executing software instructions.

In accordance with an example embodiment, the apparatus
300 includes a task execution module 306 that includes a
task-saving module 308, a combined task-pending notifica-
tion module 310, a combined task-results notification module
312, and a final-task-results module 314. The combined task-
pending notification module 310 can be further specified to
include a first task-pending notification module, a second
task-pending notification module, and so on. The combined
task-results notification module 312 can be further specified
to include a first task-results notification module, a second
task-results notification module, and so on.

The task-saving module 308 operates to save the task as a
sequence of services including a first service and a second
service, where the saved task includes a first service-input
location that indicates where first service-input values are
stored for the first service. The first task-pending notification
module 310A operates to send a first task-pending notifica-
tion from the task-coordinating unit 202 (FIG. 2) to the first
service provider 204 (FIG. 2), where the first task-pending
notification includes the first service-input location. The first
task-results notification module 312A operates to receive a
first task-results notification from the first service provider
204, where the first task-results notification includes a first
service-output location that indicates where the first service
provider 204 has stored corresponding first service-output
values.

The second task-pending notification module 310B oper-
ates to send a second task-pending notification to a second
service provider 206 (FIG. 2) corresponding to the second
service, where the second task-pending notification includes
the first service-output location identified as a second service-
input location that indicates where second service-input val-
ues are stored for the second service. The second task-results
notification module 312B operates to receive a second task-
results notification from the second service provider 206,
where the second task-results notification includes a second
service-output location that indicates where the second ser-
vice provider 206 has stored corresponding second service-
output values. The final-task-results module 314 operates to
provide selected service-output values (e.g., the second ser-
vice-output values) to a user as a final result of the task.

FIG. 4 is a block diagram of machine in the example form
of'a computer system 400 within which instructions for caus-
ing the machine to perform any one or more of the method-
ologies discussed here may be executed. In alternative
embodiments, the machine operates as a standalone device or
may be connected (e.g., networked) to other machines. In a
networked deployment, the machine may operate in the
capacity of a server or a client machine in server-client net-
work environment, or as a peer machine in a peer-to-peer (or
distributed) network environment. The machine may be a

10

15

20

25

30

35

40

45

50

55

60

65

6

personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while only a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The example computer system 400 includes a processor
402 (e.g., a central processing unit (CPU), a graphics process-
ing unit (GPU) or both), a main memory 404 and a static
memory 406, which communicate with each other via a bus
408. The computer system 400 may further include a video
display unit 410 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)). The computer system 400 also
includes an alphanumeric input device 412 (e.g., a keyboard),
a user interface (UI) navigation device 414 (e.g., a mouse), a
disk drive unit 416, a signal generation device 418 (e.g., a
speaker) and a network interface device 420.

In some contexts, a computer-readable medium may be
described as a machine-readable medium. The disk drive unit
416 includes a machine-readable medium 422 on which is
stored one or more sets of data structures and instructions 424
(e.g., software) embodying or utilizing any one or more of the
methodologies or functions described herein. The instruc-
tions 424 may also reside, completely or at least partially,
within the main memory 404 and/or within the processor 402
during execution thereof by the computer system 400, with
the main memory 404 and the processor 402 also constituting
machine-readable media.

While the machine-readable medium 422 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” may include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more data structures and instructions 424. The term
“machine-readable medium” shall also be taken to include
any tangible medium that is capable of storing, encoding or
carrying instructions for execution by the machine and that
cause the machine to perform any one or more of the meth-
odologies disclosed herein, or that is capable of storing,
encoding or carrying data structures utilized by or associated
with such instructions. The term “machine-readable
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media. Specific examples of machine-readable media include
non-volatile memory, including by way of example semicon-
ductor memory devices, e.g., Erasable Programmable Read-
Only Memory (EPROM), Electrically Erasable Program-
mable Read-Only Memory (EEPROM), and flash memory
devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; Compact Disc
Read-Only Memory (CD-ROM) and Digital Versatile Disc
Read-Only Memory (DVD-ROM).

The instructions 424 may further be transmitted or received
over a communications network 426 using a transmission
medium. The instructions 424 may be transmitted using the
network interface device 420 and any one of a number of
well-known transfer protocols (e.g., Hypertext Transfer Pro-
tocol (HTTP)). Examples of communication networks
include a local area network (LLAN), a wide area network
(WAN), the Internet, mobile telephone networks, Plain Old
Telephone (POTS) networks, and wireless data networks
(e.g., WiFi and WiMax networks). The term “transmission
medium” shall be taken to include any intangible medium that

US 9,311,612 B2

7

is capable of storing, encoding or carrying instructions for
execution by the machine, and includes digital or analog
communications signals or other intangible media to facili-
tate communication of such software.

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules or hard-
ware-implemented modules. A hardware-implemented mod-
ule is a tangible unit capable of performing certain operations
and may be configured or arranged in a certain manner. In
example embodiments, one or more computer systems (e.g.,
astandalone, client or server computer system) or one or more
processors may be configured by software (e.g., an applica-
tion or application portion) as a hardware-implemented mod-
ule that operates to perform certain operations as described
herein.

In various embodiments, a hardware-implemented module
may be implemented mechanically or electronically. For
example, a hardware-implemented module may comprise
dedicated circuitry or logic that is permanently configured
(e.g., as a special-purpose processor, such as a field program-
mable gate array (FPGA) or an application-specific inte-
grated circuit (ASIC)) to perform certain operations. A hard-
ware-implemented module may also comprise
programmable logic or circuitry (e.g., as encompassed within
a general-purpose processor or other programmable proces-
sor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to
implement a hardware-implemented module mechanically,
in dedicated and permanently configured circuitry, or in tem-
porarily configured circuitry (e.g., configured by software)
may be driven by cost and time considerations.

Accordingly, the term “hardware-implemented module”
should be understood to encompass a tangible entity, be that
an entity that is physically constructed, permanently config-
ured (e.g., hardwired) or temporarily or transitorily config-
ured (e.g., programmed) to operate in a certain manner and/or
to perform certain operations described herein. Considering
embodiments in which hardware-implemented modules are
temporarily configured (e.g., programmed), each of the hard-
ware-implemented modules need not be configured or instan-
tiated at any one instance in time. For example, where the
hardware-implemented modules comprise a general-purpose
processor configured using software, the general-purpose
processor may be configured as respective different hard-
ware-implemented modules at different times. Software may
accordingly configure a processor, for example, to constitute
aparticular hardware-implemented module at one instance of
time and to constitute a different hardware-implemented
module at a different instance of time.

Hardware-implemented modules can provide information
to, and receive information from, other hardware-imple-
mented modules. Accordingly, the described hardware-
implemented modules may be regarded as being communi-
catively coupled. Where multiple of such hardware-
implemented modules exist contemporaneously,
communications may be achieved through signal transmis-
sion (e.g., over appropriate circuits and buses) that connect
the hardware-implemented modules. In embodiments in
which multiple hardware-implemented modules are config-
ured or instantiated at different times, communications
between such hardware-implemented modules may be
achieved, for example, through the storage and retrieval of
information in memory structures to which the multiple hard-
ware-implemented modules have access. For example, one
hardware-implemented module may perform an operation,
and store the output of that operation in a memory device to

10

15

20

25

30

35

40

45

50

55

60

8

which it is communicatively coupled. A further hardware-
implemented module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware-implemented modules may also initiate communi-
cations with input or output devices, and can operate on a
resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that
operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodi-
ments, comprise processor-implemented modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
processors or processor-implemented modules. The perfor-
mance of certain of the operations may be distributed among
the one or more processors, not only residing within a single
machine, but deployed across a number of machines. In some
example embodiments, the processor or processors may be
located in a single location (e.g., within a home environment,
an office environment or as a server farm), while in other
embodiments the processors may be distributed across a
number of locations.

The one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). For
example, at least some ofthe operations may be performed by
a group of computers (as examples of machines including
processors), these operations being accessible via a network
(e.g., the Internet) and via one or more appropriate interfaces
(e.g., Application Program Interfaces (APIs)).

Although only certain embodiments have been described
in detail above, those skilled in the art will readily appreciate
that many modifications are possible without materially
departing from the novel teachings of this disclosure. For
example, aspects of embodiments disclosed above can be
combined in other combinations to form additional embodi-
ments. Accordingly, all such modifications are intended to be
included within the scope of this disclosure.

What is claimed is:

1. A method of executing a task, the method comprising:

saving the task as a sequence of services including a first
service and a second service with each non-final service
output corresponding to a subsequent service input in
the sequence of services, the saved task including a
service-completion record for the services and a first
service-input location that indicates where first service-
input values are stored for the first service, the saved task
being stored at a saved-task location that is connected
via a communication bus to a plurality of service pro-
viders including a first service provider corresponding to
the first service and a second service provider corre-
sponding to the second service, each service provider
performing distributed operations in response to a cor-
responding task-pending notification received via the
communication bus, and the distributed operations
being decentralized from operations related to sequenc-
ing the services of the task;

sending a first task-pending notification to the first service
provider via the communication bus, the first task-pend-
ing notification including the first service-input loca-
tion;

US 9,311,612 B2

9

receiving a first task-results notification from the first ser-
vice provider via the communication bus, the first task-
results notification including a first service-output loca-
tion that indicates where the first service provider has
stored corresponding first service-output values via a
first-service bus that is separate from the communication
bus, the first service-output values being generated by
the first service provider based on values from the first
service-input location, and the values from the first ser-
vice-input location being accessed by the first service
provider separately from the communication bus via the
first-service bus;

in response to receiving the first task-results notification,

updating the service-completion record at the saved-task
location to indicate a completion of the first service and
sending a second task-pending notification to the second
service provider via the communication bus, the second
task-pending notification including the first service-out-
put location identified as a second service-input location
that indicates where second service-input values are
stored for the second service;

receiving a second task-results notification from the sec-

ond service provider via the communication bus, the
second task-results notification including a second ser-
vice-output location that indicates where the second ser-
vice provider has stored corresponding second service-
output values via a second-service bus that is separate
from the communication bus, the second service-output
values being generated by the second service provider
based on values from the second service-input location,
and the values from the second service-input location
being accessed by the second service provider sepa-
rately from the communication bus via the second-ser-
vice bus; and

in response to receiving the second task-results notifica-

tion, updating the service-completion record at the
saved-task location to indicate a completion of the sec-
ond service.

2. The method of claim 1, further comprising: receiving
task-input values from a user to specify the first service-input
values.

3. The method of claim 1, further comprising: providing
selected service-output values to a user as a final result of the
task.

4. The method of claim 1, wherein the services include a
third service with a corresponding third service provider con-
nected to the communication bus, and the method further
comprises:

sending a third task-pending notification to the third ser-

vice provider via the communication bus, the third task-
pending notification including the second service-out-
put location identified as a third service-input location
that indicates where input values for the third service are
stored; and

receiving a third task-results notification from the third

service provider via the communication bus, the third
task-results notification including a third service-output
location that indicates where the third service provider
has stored corresponding third service-output results via
a third-service bus that is separate from the communi-
cation bus, the third service-output values being gener-
ated by the third service provider based on values from
the third service-input location.

5. The method of claim 1, further comprising: identifying
at least one of the service providers by accessing a service-
provider interface and relating the service-provider interface
to at least one of the services.

10

15

20

25

30

35

40

45

50

55

60

65

10

6. The method of claim 1, wherein the first and second
task-pending notifications each include the saved-task loca-
tion and the method further comprises:

providing the first service at the first service provider by

accessing the first service-input values at the first ser-
vice-input location and at least one first-service param-
eter at the saved-task location, generating the first ser-
vice-output values from the first service-input values
and the at least one first-service parameter, and storing
the first service-output values at the first service-output
location via the first-service bus; and

providing the second service at the second service provider

by accessing the second service-input values at the sec-
ond service-input location and at least one second-ser-
vice parameter at the saved-task location, generating the
second service-output values from the second service-
input values and the at least one second-service param-
eter and storing the second service-output values at the
second service-output location via the second-service
bus.

7. The method of claim 6, wherein providing at least one of
the services includes:

maintaining a cache of service-output values for the at least

one service; and

generating at least some service-output values for the at

least one service by accessing cache values stored prior
to receiving a corresponding task-pending notification.

8. The method of claim 1, wherein the communication bus
is an Enterprise Service Bus (ESB).

9. A non-transitory computer-readable medium that stores
a computer program for executing a task, wherein the com-
puter program includes instructions that, when executed by a
computer, cause the computer to perform operations compris-
ing:

saving the task as a sequence of services including a first

service and a second service with each non-final service
output corresponding to a subsequent service input in
the sequence of services, the saved task including a
service-completion record for the services and a first
service-input location that indicates where first service-
input values are stored for the first service, the saved task
being stored at a saved-task location that is connected
via a communication bus to a plurality of service pro-
viders including a first service provider corresponding to
the first service and a second service provider corre-
sponding to the second service, each service provider
performing distributed operations in response to a cor-
responding task-pending notification received via the
communication bus, and the distributed operations
being decentralized from operations related to sequenc-
ing the services of the task;

sending a first task-pending notification to the first service

provider via the communication bus, the first task-pend-
ing notification including the first service-input loca-
tion;

receiving a first task-results notification from the first ser-

vice provider via the communication bus, the first task-
results notification including a first service-output loca-
tion that indicates where the first service provider has
stored corresponding first service-output values via a
first-service bus that is separate from the communication
bus, the first service-output values being generated by
the first service provider based on values from the first
service-input location, and the values from the first ser-
vice-input location being accessed by the first service
provider separately from the communication bus via the
first-service bus;

US 9,311,612 B2

11

in response to receiving the first task-results notification,
updating the service-completion record at the saved task
location to indicate a completion of the first service and
sending a second task-pending notification to the second
service provider via the communication bus, the second
task-pending notification including the first service-out-
put location identified as a second service-input location
that indicates where second service-input values are
stored for the second service;

receiving a second task-results notification from the sec-

ond service provider via the communication bus, the
second task-results notification including a second ser-
vice-output location that indicates where the second ser-
vice provider has stored corresponding second service-
output values via a second-service bus that is separate
from the communication bus, the second service-output
values being generated by the second service provider
based on values from the second service-input location,
and the values from the second service-input location
being accessed by the second service provider sepa-
rately from the communication bus via the second-ser-
vice bus; and

in response to receiving the second task-results notifica-

tion, updating the service-completion record at the
saved-task location to indicate a completion of the sec-
ond service.

10. The computer-readable medium of claim 9, wherein the
computer program further includes instructions that, when
executed by the computer, cause the computer to perform
operations comprising:

receiving task-input values from a user to specify the first

service-input values.

11. The computer-readable medium of claim 9, wherein the
computer program further includes instructions that, when
executed by the computer, cause the computer to perform
operations comprising:

providing selected service-output values to a user as a final

result of the task.

12. The computer-readable medium of claim 9, wherein the
services include a third service with a corresponding third
service provider connected to the communication bus, and the
computer program further includes instructions that, when
executed by the computer, cause the computer to perform
operations comprising:

sending a third task-pending notification to the third ser-

vice provider via the communication bus, the third task-
pending notification including the second service-out-
put location identified as a third service-input location
that indicates where input values for the third service are
stored; and

receiving a third task-results notification from the third

service provider via the communication bus, the third
task-results notification including a third service-output
location that indicates where the third service provider
has stored corresponding third service-output results via
a third-service bus that is separate from the communi-
cation bus, the third service-output values being gener-
ated by the third service provider based on values from
the third service-input location.

13. The computer-readable medium of claim 9, wherein the
computer program further includes instructions that, when
executed by the computer, cause the computer to perform
operations comprising:

identifying at least one of the service providers by access-

ing a service-provider interface and relating the service-
provider interface to at least one of the services.

10

15

20

25

30

35

40

45

50

55

60

65

12

14. The computer-readable medium of claim 9, wherein the
first and second task-pending notifications each include the
saved-task location and the computer program further
includes instructions that, when executed by the computer,
cause the computer to perform operations comprising:

providing the first service at the first service provider by
accessing the first service-input values at the first ser-
vice-input location and at least one first-service param-
eter at the saved-task location, generating the first ser-
vice-output values from the first service-input values
and the at least one first-service parameter, and storing
the first service-output values at the first service-output
location via the first-service bus; and

providing the second service at the second service provider
by accessing the second service-input values at the sec-
ond service-input location and at least one second-ser-
vice parameter at the saved-task location, generating the
second service-output values from the second service-
input values and the at least one second-service param-
eter and storing the second service-output values at the
second service-output location via the second-service
bus.

15. The computer-readable medium of claim 14, wherein

providing at least one of the services includes:

maintaining a cache of service-output values for the at least
one service; and

generating at least some service-output values for the at
least one service by accessing cache values stored prior
to receiving a corresponding task-pending notification.

16. An apparatus that executes a task, the apparatus com-
prising at least one computer configured to perform opera-
tions for computer-implemented modules including:

a task-saving module that performs operations including:
saving the task as a sequence of services including a first
service and a second service with each non-final service
output corresponding to a subsequent service input in
the sequence of services, the saved task including a
service-completion record for the services and a first
service-input location that indicates where first service-
input values are stored for the first service, the saved task
being stored at a saved-task location that is connected
via a communication bus to a plurality of service pro-
viders including a first service provider corresponding to
the first service and a second service provider corre-
sponding to the second service, each service provider
performing distributed operations in response to a cor-
responding task-pending notification received via the
communication bus, and the distributed operations
being decentralized from operations related to sequenc-
ing the services of the task;

a first task-pending notification module that performs
operations including: sending a first task-pending noti-
fication to the first service provider via the communica-
tion bus, the first task-pending notification including the
first service-input location;

a first task-results notification module that performs opera-
tions including: receiving a first task-results notification
from the first service provider via the communication
bus, and updating the service-completion record at the
saved-task location to indicate a completion of the first
service in response to receiving the first task-results
notification, the first task-results notification including a
first service-output location that indicates where the first
service provider has stored corresponding first service-
output values via a first-service bus that is separate from
the communication bus, the first service-output values
being generated by the first service provider based on

US 9,311,612 B2

13

values from the first service-input location and the val-
ues from the first service-input location being accessed
by the first service provider separately from the commu-
nication bus via the first-service bus;

a second task-pending notification module that performs
operations including: sending a second task-pending
notification to the second service provider via the com-
munication bus, the second task-pending notification
including the first service-output location identified as a
second service-input location that indicates where sec-
ond service-input values are stored for the second ser-
vice; and

a second task-results notification module that performs
operations including: receiving a second task-results
notification from the second service provider via the
communication bus, and updating the service-comple-
tion record at the saved-task location to indicate a
completion of the second service in response to receiv-
ing the second task-results notification, the second task-
results notification including a second service-output
location that indicates where the second service provider
has stored corresponding second service-output values
via a second-service bus that is separate from the com-
munication bus, the second service-output values being
generated by the second service provider based on val-
ues from the second service-input location, and the val-
ues from the second service-input location being
accessed by the second service provider separately from
the communication bus via the second-service bus.

17. The apparatus of claim 16, wherein the task-saving
module performs operations including: receiving task-input
values from a user to specify the first service-input values.

18. The apparatus of claim 16, wherein the apparatus per-
forms operations including: providing selected service-out-
put values to a user as a final result of the task.

19. The apparatus of claim 16, wherein the services include
a third service with a corresponding third service provider
connected to the communication bus, and the apparatus fur-
ther comprises:

a third task-pending notification module that performs
operations including: sending a third task-pending noti-
fication to the third service provider, the third task-pend-
ing notification including the second service-output
location identified as a third service-input location that
indicates where input values for the third service are
stored; and

15

20

25

30

35

14

a third task-results notification module that performs
operations including: receiving a third task-results noti-
fication from the third service provider via the commu-
nication bus, the third task-results notification including
a third service-output location that indicates where the
third service provider has stored corresponding third
service-output results via a third-service bus that is sepa-
rate from the communication bus, the third service-out-
put values being generated by the third service provider
based on values from the third service-input location.

20. The apparatus of claim 16, wherein the apparatus per-
forms operations including: identifying at least one of the
service providers by accessing a service-provider interface
and relating the service-provider interface to at least one of
the services.

21. The apparatus of claim 16, wherein the first and second
task-pending notifications each include the saved-task loca-
tion and the apparatus further comprises:

a first service module at the first service provider, wherein
the first service module performs operations including:
providing the first service at the first service provider by
accessing the first service-input values at the first ser-
vice-input location and at least one first-service param-
eter at the saved-task location, generating the first ser-
vice-output values from the first service-input values
and the at least one first-service parameter, and storing
the first service-output values at the first service-output
location via the first-service bus; and

a second service module at the second service provider,
wherein the second service module performs operations
including: providing the second service at the second
service provider by accessing the second service-input
values at the second service-input location and at least
one second-service parameter at the saved-task location,
generating the second service-output values from the
second service-input values and the at least one second-
service parameter and storing the second service-output
values at the second service-output location via the sec-
ond-service bus.

22. The apparatus of claim 21, wherein providing at least

one of the services includes:

maintaining a cache of service-output values for the at least
one service; and

generating at least some service-output values for the at
least one service by accessing cache values stored prior
to receiving a corresponding task-pending notification.

#* #* #* #* #*

